Safety and Efficacy of Ixmyelocel-T, A Patient-Specific Expanded Multicellular Therapy, in Dilated Cardiomyopathy

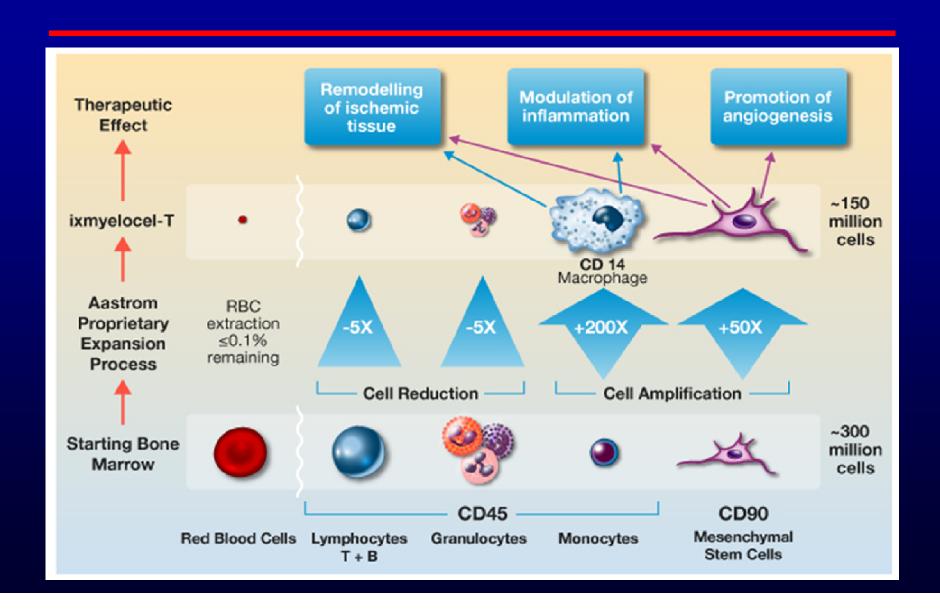
Timothy D. Henry, Jay H. Traverse, Rod Badger, Marco Costa, Patricia Mitchell, Kristen Kolsch, Ronnda L. Bartel, Sharon Watling, Amit N. Patel

Disclosure

- Trial was sponsored by Aastrom
- Research support for other cell therapy trials from NIH, Baxter, and Angioblast

Introduction

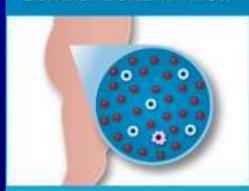
- Increasing number of patients have ongoing failure (HF) symptoms despite optimal medical and device therapy
- Current options include LV assist device and cardiac transplantation
- Cell therapy is an attractive alternative


Cardiovascular Cell Therapy for HF

- Strong preclinical data with multiple cell types
- Excellent safety and positive signals from phase 1 unselected bone marrow mononuclear cells
- Number and potency of autologous stem cells from unselected bone marrow decrease with age and risk factors
- FOCUS trial (JAMA 2012;307:1717-1726):
 - Overall no improvement in MVO₂ or ESV
 - Significant improvement in LVEF (+2.9%)
 - Clinical benefits directly related to cell function and type

Strategies to Enhance Cell Therapy

- Increase the number of cells (autologous)
 - Whole bone marrow (Harvest)
- 2. Selected cells (autologous)
 - Adipose derived cells (Cytori)
 - CD34+ cells (Baxter)
 - ALD-bright (Aldagen)
- 3. Expand and/or enhanced cells (autologous)
 - Aastrom Biosciences
 - C-Cure
- 4. Allogeneic
 - MPC (Mesoblast-Teva)
 - MSC (Osiris)
 - MAPC (Athersys)
- 5. Cardiac derived
 - Caduceus (Capricor)
 - SCIPIO

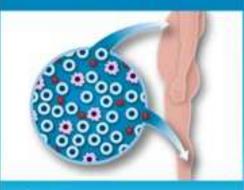

A Unique Multicellular Therapy: Ixmyelocel-T

Ixmyelocel-T Automated 14 Day Process


EXTRACT BONE MARROW

Day 1

- Bone marrow (approx. 50ml/3 tablespoons) is taken from patient's hip
- 15 minute outpatient procedure


EXPAND CELL POPULATION

Days 2-13

 Aastrom's proprietary automated system expands key beneficial cell types

ADMINISTER TO PATIENT

Day 14

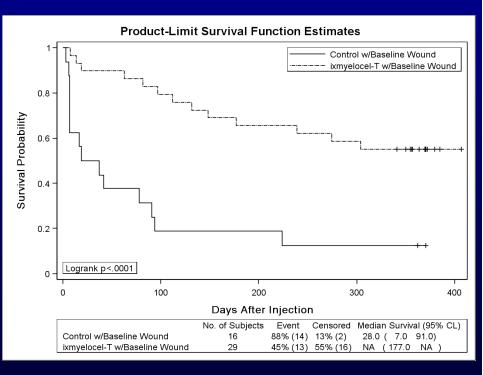
- Expanded multicellular therapy is administered to the same patient
- 20 minute in-office procedure for CLI patients
- Endocardial catheter injections for DCM patients

Ixmyelocel-T Final Product

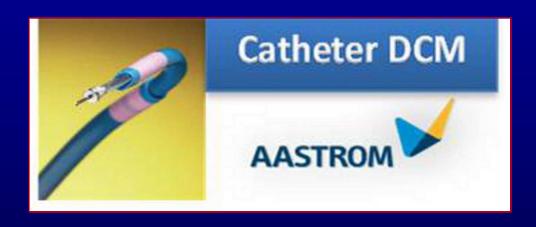
- Safe
- Easy to use
- Ready to use:
 - No freezing or refrigeration
 - No thawing
 - No reconstitution

Ixmyelocel-T Clinical Trials

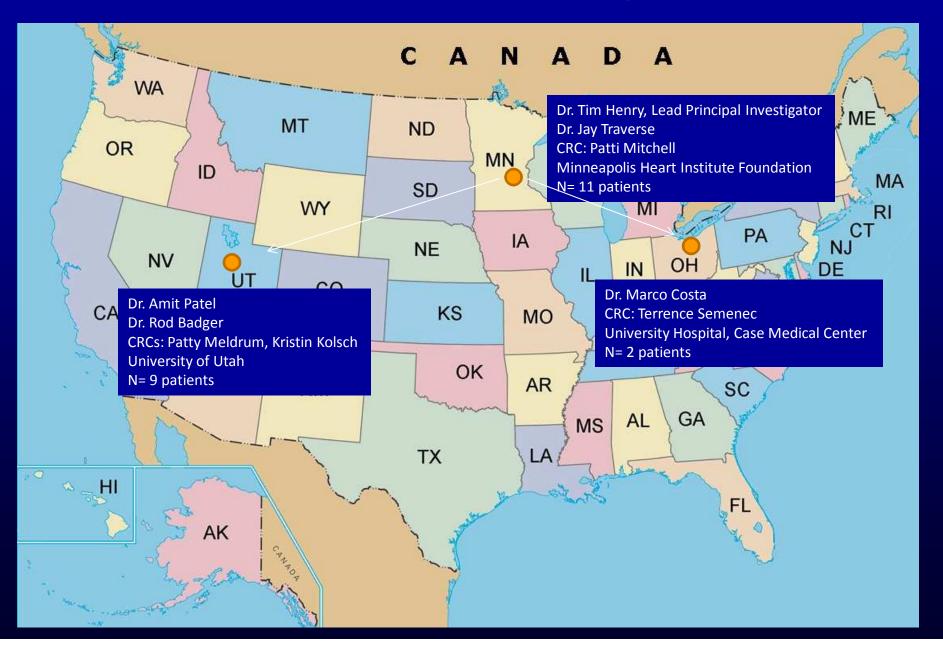
- ◆ CLI
 - RESTORE-CLI (Phase 2b completed)
 - REVIVE-CLI (Phase 3 initiated in early 2012) http://www.revivecli.com/
- Dilated cardiomyopathy
 - Impact-DCM (Phase 2a completed)
 - Catheter-DCM (Phase 2a completed 12-month)
 - RENEW-DCM (Phase 2b will be initiated in June this year)


RESTORE CLI: Time to First Occurrence of Treatment Failure

All Treated Patients (N=72)



62% risk reduction: HR 0.38, 95%CI = (0.20-0.74)

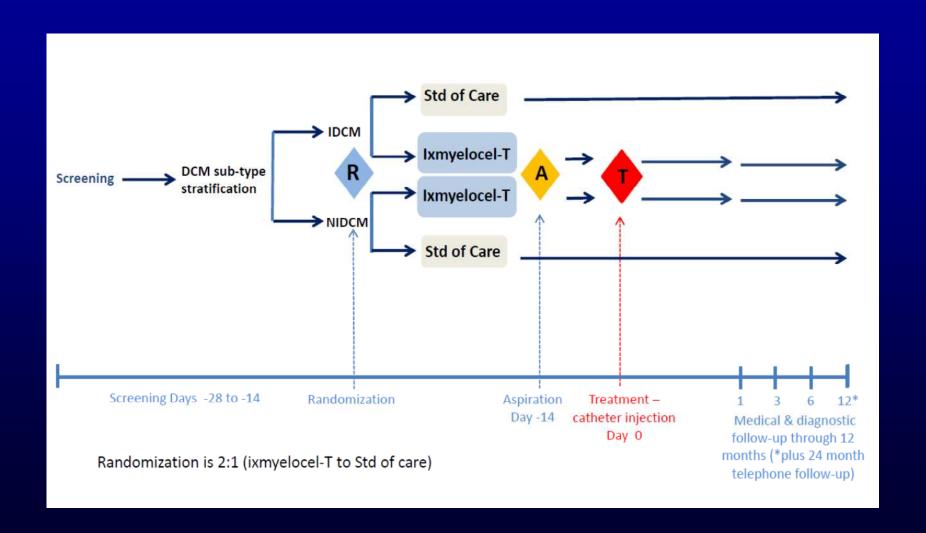

Baseline Wound Patients (N=45)

77% risk reduction: HR = 0.225, 95% CI = (0.103, 0.490) Cox PH p-value for treatment = 0.0002

Catheter-DCM: Participating Centers

Study Objectives

- Primary objective: safety
 - Planned interim analysis conducted when all subjects completed 6 months
 - Planned final analysis conducted when all subjects completed 12 months
- Secondary objective: investigate efficacy endpoints
 - Clinical (MACE events)
 - Functional endpoints (cardiopulmonary stress, 6 min walk)
 - Structural Endpoints (ECHO, LVEF/volume)
 - QOL/Subjective endpoints (NYHA, MLWHF)



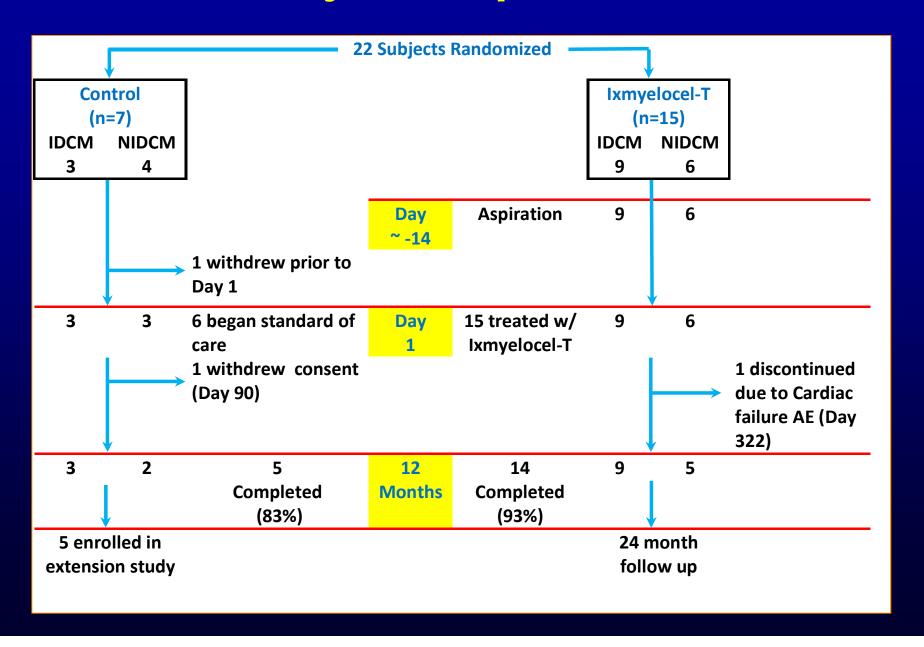
Study Design

- Randomized 2: 1 (ixmyelocel-T: standard of care)
- Stratified by ischemic (IDCM) or non-ischemic DCM (NIDCM)
- Catheter-based transendocardial injections into left ventricle (NOGA®/MYOSTAR™)
- Control subjects received standard of care/no additional intervention
- Both groups had maximal care throughout the study
- Control patients allowed to crossover to ixmyelocel-T treatment after a minimum of 6 months of follow-up

Study Schematic

Key Inclusion/Exclusion Criteria

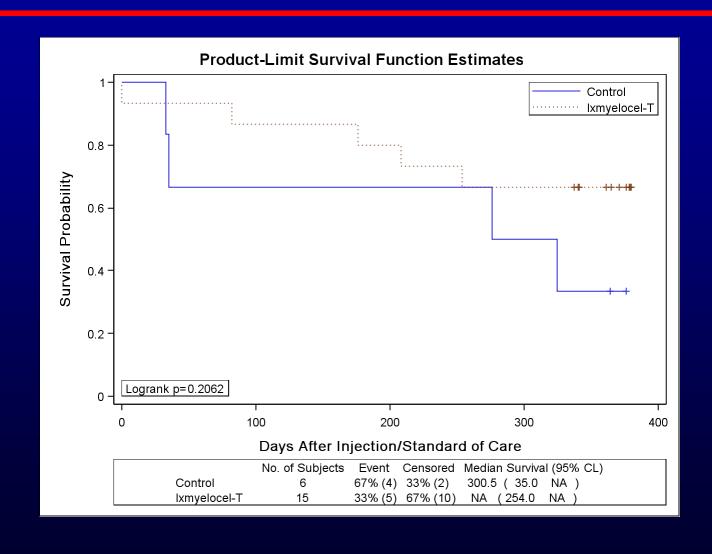
Inclusion Criteria


- Age 18-86yrs
- Ischemic or non-ischemic DCM
- NHYA Class III /IV
- ◆ EF≤ 30% (echo)
- No other revascularization options
- Appropriate, stable medical therapy for DCM
- ◆ AICD in place ≥3 mos (unless contraindicated)

Exclusion Criteria

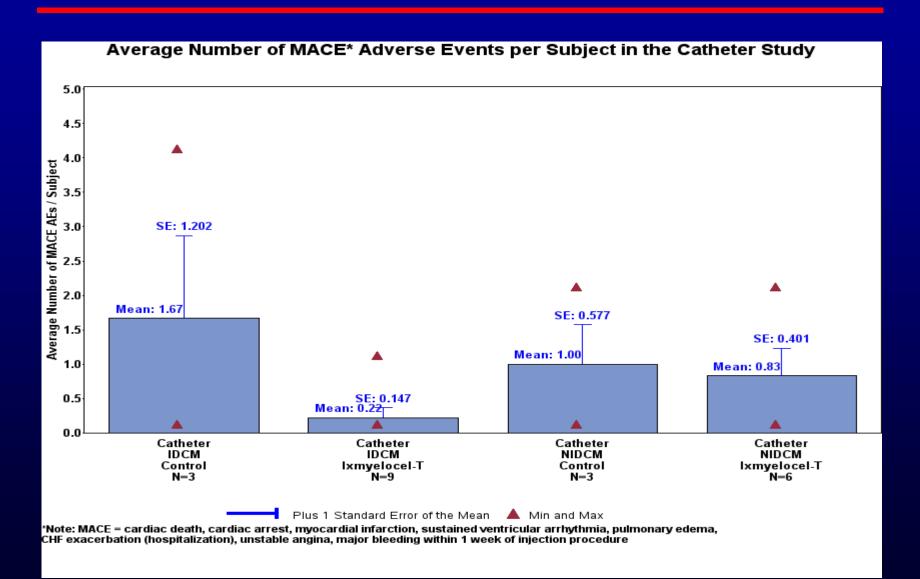
- Severe valvular heart disease
- History of COPD
- ◆ BMI ≥40 Kg/m²
- Unstable angina
- Complication risk from cardiac catheterization/injection procedure
- End stage renal disease (requiring dialysis)

Subject Disposition



Demographics

Category	Ixmyelocel-T N=15	Control N=6
Male N (%)	14 (93.3)	6 (100)
Age (years) mean min,max	64.0 29, 83	56.8 29, 79
BMI mean min,max	28.8 22, 39	27.5 20, 36
EF% (from echo) Mean	23.9	22.3
NYHA III/IV	14/1	6/0



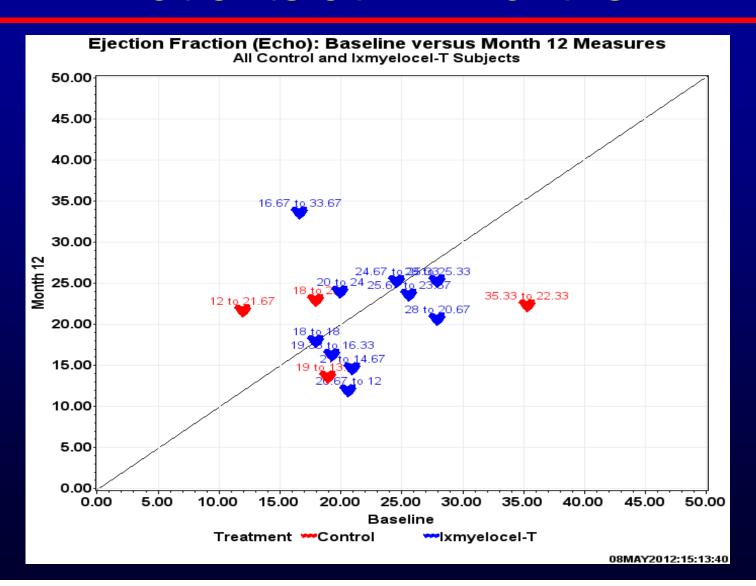
Time to Occurrence of First MACE Event (by Treatment)

Average # of MACE/Patient

Efficacy Functional: NHYA

Improvement NYHA >1 from Baseline	Ixmyelocel-T n / N (%)		Controls n / N (%)
	IDCM	NIDCM	(Controls combined)
At 3 Months	7 / 9 (78)	3 / 6 (50)	0 / 5 (0)
At 6 Months	7 / 9 (78)	3 / 6 (50)	1 / 5 (20)
At 12 Months	9 / 9 (100)	2 / 5 (40)	0 / 5 (0)

Efficacy Functional: 6 Minute Walk


Improvement from Baseline	Ixmyelocel-T n / N (%)		Controls n / N (%)
	IDCM	NIDCM	(Controls combined)
At 3 Months	8 / 9 (89)	4 / 6 (67)	0 / 5 (0)
At 6 Months	7 / 9 (78)	5 / 5 (100)	4 / 5 (80)
At 12 Months	6 / 9 (67)	2 / 4 (50)	1 / 5 (20)

Catheter DCM AASTROM

Efficacy Structural: Ejection Fraction (ECHO)

Improved EF (ECHO) from Baseline	Ixmyelocel-T n / N (%)		Controls n / N (%)
	IDCM	NIDCM	(Controls combined)
At 3 Months	4 / 7 (57)	1/6 (17)	1 / 4 (25)
At 6 Months	5 / 7 (71)	2/6 (33)	1 / 4 (25)
At 12 Months	1 / 5 (20)	2/5 (40)	2 / 4 (50)

Ejection Fraction – All Patients at 12 months

Conclusions

- Transendocardial injection of ixmyelocel-T was well tolerated in patients with DCM
- AE incidence was comparable between the ixmyelocel-T group and the control standard of care group
- Despite small patient numbers, trends toward improvement were observed in IDCM patients:
 - MACE events
 - NYHA
 - 6 minute walk
- Large phase 2b will begin this summer with IDCM patients with EF ≤30%